

Universitas Negeri Surabaya Faculty of Engineering Civil Engineering Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN CODE **Credit Weight** SEMESTER Compilation Date Courses **Course Family** Compulsory Study Program Subjects FLUID MECHANICS AND 2220103176 P=0 ECTS=4.77 T=3 2 January 26, HYDRAULIC 2024 Study Program Coordinator AUTHORIZATION SP Developer Course Cluster Coordinator Danayanti Azmi Dewi Nusantara, S.T., Danayanti Azmi Dewi Yogie Risdianto, S.T., M.T. M.T. Nusantara, S.T., M.T. Learning **Project Based Learning** model PLO study program which is charged to the course Program Learning Program Objectives (PO) Outcomes (PLO) Able to apply knowledge of fluid mechanics and hydraulics to gain a thorough understanding of the basic principles of water civil engineering. PO - 1 PO - 2 Able to carry out laboratory experiments and analyze data to compile a practical report. PO - 3 Able to analyze hydraulics in open and closed channels to solve civil engineering problems in the water sector. PO - 4 Able to apply modern methods, skills and technical tools required for hydraulic analysis. **PLO-PO** Matrix P.O PO-1 PO-2 PO-3 PO-4 PO Matrix at the end of each learning stage (Sub-PO) P.O Week 12 1 2 4 5 6 7 8 10 14 3 9 11 13 15 16 PO-1 PO-2 PO-3 PO-4 Fluid Mechanics and Hydraulics are one of the basic sciences in civil engineering in the field of water. This course discusses the basics of fluids and their flow properties in open and closed channels. Apart from that, some of the topics that will be discussed Short Course are an introduction to fluid properties, definitions of hydraulics, hydrostatic forces, flow patterns and principles, channel geometry, and flow profiles in open and closed channels. Lectures are carried out theoretically (2 credits) and practicum (1 credit). For theory, it is done face to face, either directly or online. Assessments are carried out to determine the achievement of Description course learning outcomes through assignments, quizzes, mid-semester exams, final semester exams, and practical reports. Main : References

Support	1. Anggrai 2. ASCE 2 3. Djoni Iria 4. Frank M 5. ISH. 202 6. Soedrac 7. Soemitr 8. Subram 9. Triatmod 10. Ven Te Supporters:	 Anggraini. 1995. Hidrolika Saluran Terbuka . Jakarta: Erlangga. ASCE. 2015. Jurnal of Hydraulic Engineering . Djoni Irianto. 2001. Hidrolika . Surabaya: Unesa Press. Frank M. White. 1994. Fluide Mechanic and Hidraulic. Mc GrawHill ISH. 2015. Jurnal of Hydraulic Engineering. Soedradjat. 1983. Mekanika Fluida dan Hidrolika . Bandung: Nova. Soemitro Herman Widodo, Ronald V. Giles. 1990. Mekanika fluida & Hidrolika . Jakarta: Erlangga. Subramanya. 1995. Hidrolika . Jakarta: Erlangga. Triatmodjo, B. 1991. Hidraulika . Yogyakarta: Beta Offset. Ven Te Chow. 1985. Hidrolika dan Saluran Terbuka . Jakarta: Erlangga. 					
lecturer	Danayanti Azmi Siti Talitha Rach	Dewi Nusantara, S. ma, S.T., M.Sc.	Т., М.Т.				
Week-	Final abilities of each learning stage	Evaluation		Help Learning, Learning methods, Student Assignments, [Estimated time]		Learning materials [References	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (online)	1	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Able to understand the definition and properties of fluids	 Students can explain the definition and properties of fluids and their relationship to civil engineering so that students understand Newton's Law and its use, dimensions and units used. Students can give examples of deriving equations as well as dimensions and units of each parameter in fluid properties. 	Form of Assessment : Project Results Assessment / Product Assessment	Participatory Activities 3 X 50		Material: Definition and properties of fluids Reference: ASCE. 2015. Journal of Hydraulic Engineering.	3%

2	Able to explain the basic principles of hydrostatistics	 Students are able to understand the concept of hydrostatics and can calculate the amount of fluid pressure using a manometer. Students are able to understand fluid pressure on flat and curved surfaces and can calculate the pressure of several types of sluice gates. Students can calculate the relative balance of fluids that are moved horizontally or rotated. 	Form of Assessment : Project Results Assessment / Product Assessment	Participatory Activities 3 X 50	Material: Basic principles of hydrostatistics Library: ISH. 2015. Journal of Hydraulic Engineering.	3%
3	Able to understand the basic concepts of flow and their equations	Students are able to understand the laws of determining mass, determining energy and momentum	Form of Assessment : Project Results Assessment / Product Assessment	Participatory Activities 3 X 50	Material: Basic concepts of flow and their equations Reference: Anggraini. 1995. Open Channel Hydraulics. Jakarta: Erlangga.	3%
4	Able to understand the laws of hydrostatics	Students are able to understand the distribution of hydrostatic pressure	Form of Assessment : Participatory Activities	Participatory Activities 3 X 50	Material: Laws of hydrostatics Reader: Frank M. White. 1994. Fluide Mechanics and Hydraulics. McGraw Hill	3%
5	Able to understand the laws of hydrostatics	Students are able to calculate the pressure force in a submerged area	Form of Assessment : Participatory Activities	Participatory Activities 3 X 50	Material: Laws of hydrostatics, pressure forces in submerged areas. Reference: Soedradjat. 1983. Fluid Mechanics and Hydraulics. Bandung: Nova.	3%

6	Able to calculate the stability of floating objects	 Students understand Archimedes' law Students are able to calculate the stability of floating objects Students differentiate between stable and unstable floating objects 	Form of Assessment : Participatory Activities	Participatory Activities 3 X 50	Material: Floating objects Reference: Soedradjat. 1983. Fluid Mechanics and Hydraulics. Bandung: Nova.	3%
7	Able to understand relative balance	 Students are able to calculate the pressure in a tank that is accelerating Students are able to calculate the increase in surface elevation of a liquid in a cylinder 	Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Participatory Activities 3 X 50		3%
8	Mastering Fluid Mechanics material by taking the Mid-Semester Exam (UTS)	Students master Fluid Mechanics material by taking the Mid- Semester Exam (UTS)	Form of Assessment : Project Results Assessment / Product Assessment, Test	UTS 3 X 50	Material: Fluid Mechanics Library: Soedradjat. 1983. Fluid Mechanics and Hydraulics. Bandung: Nova. Material: Fluid Mechanics Reader: Frank M. White. 1994. Fluide Mechanics and Hydraulics. Mechanics	15%
9	Able to understand open channel flow and its classification	 Students are able to understand flow types Students are able to understand the nature of flow Students are able to understand flow regimes 	Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Practices / Performance	Participatory Activities 3 X 50	Material: Hydraulics Reference: Ven Te Chow. 1985. Hydraulics and Open Channels. Jakarta: Erlangga.	3%

10	Able to understand the shape and properties of open flow	 Students are able to understand the cross- sectional geometry of open channels Students are able to understand the distribution of speed in a channel cross- section 	Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Practices / Performance	Participatory Activities 3 X 50	Material: Hydraulics Reference: Subramanya. 1995. Hydraulics. Jakarta: Erlangga.	3%
11	Able to understand the principles of energy and momentum	 Students are able to calculate specific energy Students are able to calculate specific forces 	Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Practices / Performance	Participatory Activities 3 X 50	Material: Hydraulics Library: ASCE. 2015. Journal of Hydraulic Engineering.	4%
12	Able to calculate and apply critical flow principles	Students are able to calculate and apply critical flow principles	Form of Assessment : Participatory Activities	Participatory Activities 3 X 50	Material: Hydraulics Library: Anggraini. 1995. Open Channel Hydraulics. Jakarta: Erlangga.	4%
13	Able to calculate uniform flow in open channels	 Students are able to calculate normal depth and flow velocity Students are able to calculate the normal slope and critical slope 	Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	3 X 50	Material: Hydraulics Reference: Ven Te Chow. 1985. Hydraulics and Open Channels. Jakarta: Erlangga.	4%
14	Able to calculate flow surface profiles	 Able to calculate the flow surface profile changing gradually Able to calculate rapidly changing flow surface profiles 		Participatory Activities 3 X 50	Material: Hydraulics Literature: Soemitro Herman Widodo, Ronald V. Giles. 1990. Fluid mechanics & Hydraulics. Jakarta: Erlangga.	3%
15	 Able to calculate open channel planning for uniform flow Able to calculate the discharge in the channel through the threshold 	Students are able to calculate open channel planning for uniform flow	Form of Assessment : Project Results Assessment / Product Assessment	Practical 3 X 50	Material: Hydraulics Library: Soedradjat. 1983. Fluid Mechanics and Hydraulics. Bandung: Nova.	20%

16	Mastering Open Channel Hydraulics material by taking the Final Semester Examination (UAS)	Students master Open Channel Hydraulics material by taking the Final Semester Examination (UAS)	Form of Assessment : Project Results Assessment / Product Assessment, Test	UAS 3 x 50		Material: Hydraulics Reference: Ven Te Chow. 1985. Hydraulics and Open Channels. Jakarta: Erlangga. Material: Hydraulics Library: Anggraini. 1995. Open Channel Hydraulics. Jakarta: Erlangga.	29%
----	---	---	---	---------------	--	--	-----

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	19.83%
2.	Project Results Assessment / Product Assessment	57.83%
3.	Practice / Performance	3.33%
4.	Test	22%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or
 observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the
 course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.