Course Description
This course examines linear and nonlinear phenomena that exist in the universe through mathematical models, especially through systems of ordinary differential equations. Lectures will involve students in understanding planar linear systems, plane and phase portraits, system equilibrium points, stability analysis, planar nonlinear systems, high-dimensional nonlinear systems, linearization, eigenvalue analysis, and bifurcation. Methods for solving the system are carried out analytically, geometrically, topologically and numerically using software assistance.
Program Objectives (PO)
- Mengkonstruksi sistem dinamik berdasarkan fenomena di dunia nyata melalui prinsip-prinsip pemodelan yang valid
- Menganalisis penyelesaian sistem dinamik (penentuan titik ekuilibrium dan (pendekatan) solusi umum, analisis kestabilan solusi dan bifurkasinya).
- Melakukan analisis sistem dinamik menggunakan bantuan software.
- Mendiskusikan model yang diperoleh dan analisis yang dilakukan.
- Menyusun model matematika suatu permasalahan nyata, melakukan analisis solusi sistem/model yang diperoleh, melakukan simulasi numerik dan menginterpretasikannya.